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COMPLETIONS OF HANKEL PARTIAL

CONTRACTIONS OF SIZE 5× 5 NON-EXTREMAL CASE

Sang Hoon Lee*

Abstract. We introduce a new approach that allows us to solve,
algorithmically, the contractive completion problem. In this arti-
cle, we provide concrete necessary and sufficient conditions for the
existence of contractive completions of Hankel partial contractions
of size 4× 4 using a Moore-Penrose inverse of a matrix.

1. Introduction

A partial matrix is a square array in which some entries are specified
and others are not. A completion of a partial matrix is a choice of
values for the unspecified entries. A matrix completion problem asks
whether a given partial matrix has a completion of a desired type. For
example, the positive definite completion problem asks which partial
Hermitian matrices have a positive definite completion. For a 2 × 2

partial operator matrix A ≡
(

B C
D X

)
, we say that X is a solution for

A, if A is a completion of a desired type. These completion problems
have been studied by G. Arsene and A. Gheondea [1], by C. Davis, W.
Kahan and H. Weinberger [10] (see also [4] and [9]), by C. Foiaş and
A. Frazho [11] (using Redheffer products), by S. Parrott [22], and by Y.
L. Shmul’yan and R. N. Yanovskaya [24]; a solution is also implicit in
the work of W. Arveson [2] (see also [17] and [23]). A Hankel matrix
is a square matrix with constant skew-diagonals. A Toeplitz matrix is
a square matrix in which each descending diagonal from left to right is
constant. Hankel and Toeplitz matrices have a long history (see, for
instance, [16]) and have given rise to important recent applications in
a variety of areas. A matrix completion problem is due, in particular,
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to its many applications, e.g., in probability and statistics (e.g. entropy
methods for missing data, see, for instance, [12] and [13]), chemistry
(e.g. the molecular conformation problem [5]), numerical analysis (e.g.
optimization, see, for instance, [20]), electrical engineering (e.g. data
transmission, coding and image enhancement, see, for instance, [3]) and
geophysics (seismic reconstruction problems, see, for instance, [14]). A
Hankel Partial Contraction (HPC) is a square Hankel matrix such that
not all of its entries are determined, but in which every well-defined
submatrix (completely determined submatrix) is a contraction (in the
sense that their operator norms are at most 1). In this article, we study
whether a HPC can be completed to a contraction or not when the upper
left triangle is known. That is, given real numbers a1, · · · , an, let
(1.1)

Hn ≡ Hn(a1, a2, · · · , an;x1, · · · , xn−1) :=


a1 a2 · · · an−1 an
a2 a3 · · · an x1

...
...

. . .
...

...
an−1 an · · · xn−3 xn−2

an x1 · · · xn−2 xn−1


be a Hankel matrix, where x1, · · · , xn−1 are real numbers to be deter-
mined. We then consider:

Problem 1.1. Find the necessary and sufficient conditions on the
given real numbers a1, a2, · · · , an as in (1.1) to guarantee the existence
of a contractive Hankel completion.

We say that Problem 1.1 is well-posed if Hn is partially contractive,
and that it is soluble if Hn is contractive for some x1, · · · , xn−1. We
also say that Hn is extremal if a21 + · · ·+ a2n = 1.

In [7, Section 4], R. Curto, S. Lee and J. Yoon found necessary and
sufficient conditions for the existence of contractive completion of HPC’s
of the extremal type for 4× 4 matrices. In this paper, we improve and
extend the main results in [7, Section 4] to the non-extremal type for
4×4 matrices and extremal type for 5×5 matrices, respectively. We also
give a negative answer to the conjecture presented in [7, Remark 4.5].
We find concrete necessary and sufficient conditions for the existence
of completion of 4 × 4 and 5 × 5 Hankel partial contractions using the
Nested Determinants Test (or Choleski’s Algorithm), the Moore-Penrose
inverse of a matrix, the Schur product techniques of matrices, and the
congruence of the positivity for two matrices. All these techniques may
allow us to solve, algorithmically, the contractive completion problem
for the non-extremal type of 5× 5 Hankel matrices and more.
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2. Preliminaries

For the reader’s convenience, in this section, we gathered several aux-
iliary results which are needed for the proofs of the main results in this
article. We first recall that an n × n matrix Mn×n is a contraction if
and only if the matrix

Pn ≡ Pn(Mn×n) := I −Mn×nM
∗
n×n

is positive semi-definite (in symbols, Pn ≥ 0), where I is the identity
matrix andM∗

n×n is the adjoint ofMn×n. In order to check the positivity
of Pn, we use the following version of the Nested Determinants Test.

Lemma 2.1. ([6]) Assume

P ≡ (pij)
n
i,j=1 :=

(
u t
t∗ P0

)
,

where P0 is an (n− 1)× (n− 1) matrix, t is a row vector, and u is a real
number.

(i) If P0 is invertible, then detP = detP0(u− tP−1
0 t∗).

(ii) If P0 is invertible and positive, then P ≥ 0 ⇐⇒ (u − tP−1
0 t∗) ≥

0 ⇐⇒ detP ≥ 0.
(iii) If u > 0 then P ≥ 0 ⇐⇒ P0 − t∗u−1t ≥ 0.

(iv) If P ≥ 0 and pii = 0 for some i, 1 ≤ i ≤ n, then pij = pji = 0
for all j = 1, · · · , n.

We next consider:

Lemma 2.2. (cf. [25]) Let M ≡
(

A B
B∗ C

)
be a 2 × 2 operator

matrix, where A and C are square matrices and B is a rectangular
matrix. Then,

M ≥ 0 if and only if there exists W such that

 A ≥ 0,
B = AW , and
C ≥ W ∗AW .

For a m × n matrix A, the Moore-Penrose inverse of A is defined
as a matrix as a n × m matrix A† satisfying all of the following four
conditions:
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(i) AA†A = A; (ii) A†AA† = A†; (iii)
(
AA†)∗ = AA†; (iv)

(
A†A

)∗
=

A†A.
The following result is a variant of Lemma 2.2.

Lemma 2.3. ([8, Lemma 1.2]) Let M ≡
(

A B
B∗ C

)
be a finite

matrix. Then, M ≥ 0 if and only if the following three conditions hold:

(i) A ≥ 0;
(ii) ranB ⊆ ran A; and
(iii) C ≥ B∗A†B, where A† is the Moore-Penrose inverse of A.

The following result suggests that we could complete

(
A B
C ∗

)
as a

contraction provided that
(
A B

)
and

(
A C

)T
are contractive. This

Lemma makes some contribution to establish main results.

Lemma 2.4. (cf. [10], [22]) If
(
A B

)
and

(
A C

)T
are contrac-

tions, then there exists a matrix D such that the matrix

(
A B
C D

)
is

a contraction as well.

Here, we pose to introduce matrices whose positive semi-definiteness
and determinant play an important role in getting main results. For
−1 ≤ a, b, c, d ≤ 1, we let

H22 (x) :=

(
a b
b x

)
, H23(x) :=

(
a b c
b c x

)
, H24(x) :=

(
a b c d
b c d x

)
,

H33 (x) :=

 a b c
b c d
c d x

 , H32 :=

b c
c d
d e


and define a matrix-valued function P (A) := I − AA∗, where I is the
identity matrix of the same size as AA∗. We also let

P22(x) := P (H22(x)), P23(x) := P (H23(x)),

P24(x) := P (H24(x)), P33(x) := P (H33(x)), and R23 := P (H32) .

Then, we investigate some connections among the matrices given above:

Lemma 2.5. If 1−a2−b2 > 0 and detP22 (c) = 0, then detP23 (x) ≥ 0

if and only if x = − bc(a+c)
1−a2−b2

.

Corollary 2.6. If 1− a2 − b2 − c2 > 0, then the following holds:

(i) For some −1 ≤ x ≤ 1, if detP23(x) = 0, then detP22 (c) ≥ 0;
(ii) For some −1 ≤ x ≤ 1, detP23(x) > 0 if and only if detP22 (c) > 0;
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(iii) If detP22 (c) = 0, then there is x such that detP23(x) = 0. In-

deed, x = − bc(a+c)
1−a2−b2

.

For the next auxiliary results, we observe by Lemma 2.3 (iii) that

H33(x) is a HPC ⇐⇒ f1(x) := α1x
2 + β1x+ γ1 ≥ 0;

H24(x) is a HPC ⇐⇒ f2(x) := α2x
2 + β2x+ γ2 ≥ 0,

where the coefficients are

α1 := − detP22(c)
1−a2−b2−c2

,

β1 :=
2(−ac2−b2c3+ac4−2bcd+2b3cd−2abc2d−ab2d2−cd2+a2cd2)

1−a2−b2−c2
,

γ1 :=
(1−b2+ac−c2−d2)

2−(a+c−c3+2bcd−ad2)
2

1−a2−b2−c2
,

α2 := −
(
1− a2 − b2 − c2

)
, β2 := −2d (ab+ bc+ cd), and

γ2 := detP23 (d)− d2
(
1− b2 − c2 − d2

)
.

Let S+ (i) (resp. S− (i)) ⊆ [−1, 1] be the solution set of fi(x) ≥ 0
(resp. fi(x) < 0) for i = 1, 2. Then, we inspect how detP23 (d) affects
on the solution set of the quadratic inequalities of fi(x) ≥ 0:

Lemma 2.7. If 1−a2−b2−c2−d2 > 0, then the following statements
are true:

(i) The discriminant β2
1 − 4α1γ1 of the quadratic equation f1(x) is

β2
1 − 4α1γ1 =

4 (detP23 (d))
2

(1− a2 − b2 − c2)2
;

(ii) The discriminant β2
2 − 4α2γ2 of the quadratic equation f2(x) is

β2
2 − 4α2γ2 = 4

(
1− a2 − b2 − c2 − d2

)
detP23 (d) .

Furthermore, if 1− a2 − b2 − c2 − d2 > 0, then for i = 1, 2, we have

(2.1) S+ (i) ̸= ∅ =⇒ detP23 (d) ≥ 0.

We conclude this section with a helpful tool used in the proof of main
results:

Lemma 2.8. Problem 1.1 is soluble for H4 ≡ H4(a, b, c, d;x, y, z) if
and only if there exists x satisfying both inequalities

(2.2) ∥H24 (x)∥ ≤ 1 and ∥H33 (x)∥ ≤ 1.
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3. Partially contractive Hankel matrices of extremal type:
The case 4× 4

Since ∥S∥ ≤ ∥T∥, if S is a submatrix of the matrix T with ∥T∥ ≤
1, then S is again a contraction. Thus, a necessary condition for a
partial matrix T to be a contraction is that each submatrix must be a
contraction. We call a partial matrix meeting this necessary condition
a partial contraction (or well-posed condition).

In this section, we improve the main results in [7]; Theorem 3.2 given
below covers the results in [7, Theorems 4.2, 4.3 and 4.4] at a time. We
need to introduce another matrices to establish the main results; let

H34 (x, y) :=

 a b c d
b c d x
c d x y

 and H43 (x, y) :=


a b c
b c d
c d x
d x y

 .

Also, let C1 (a, b, c, d) := (a+ c)(b+ d) (ad− ab− bc− cd) and
C2 (a, b, c, d) := |(a+ c)(b+ d)| − |ac+ bd|. We next present more con-
crete conditions for the solubility of H4 according to the values of d:

Theorem 3.1. ([7]) Assume d = 0. Then, Problem 1.1 is soluble
for H4 if and only if

b(a+ c) = 0.

We also have:

Theorem 3.2. ([19]) Assume d ̸= 0. Then, Problem 1.1 is soluble
for H4 if and only if the following two conditions hold:

(i) C1 (a, b, c, d) ≥ 0 and
(ii) C2 (a, b, c, d) ≥ 0.

4. Partially contractive Hankel matrices of non-extremal type:
The case 4× 4

We now pay attention to the non-extremal type for 4 × 4 Hankel
matrices of the form H4 ≡ H4(a, b, c, d;x, y, z) (that is, when a2 + b2 +
c2 + d2 < 1). Consider the solubility of Problem 1.1 for a Hankel
matrix H4 which is well-posed. For i = 1, 2, suppose αi < 0 and βi,
γi ∈ R. We recall that S+ (i) (resp. S− (i)) ⊆ [−1, 1] is the solution
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set of the quadratic inequality equation fi(x) = αix
2 + βix + γi ≥ 0

(resp. fi(x) < 0). We next let

k1 :=
−c(ac+bd)−(1−a2−b2−c2)

1−a2−b2
and k2 :=

−c(ac+bd)+(1−a2−b2−c2)
1−a2−b2

.

Theorem 4.1. ([19]) Assume detP22 (c) = 0. Then Problem 1.1 is
soluble for H4 if and only if

k1 ≤
2b2c (a+ c)2

(1− a2 − b2)2
≤ k2.

We next have:

Theorem 4.2. ([19]) Assume detP22 (c) > 0. Then, Problem 1.1 is
soluble for H4 if and only if

S+ (1) ∩ S+ (2) ̸= ∅.

5. Partially contractive Hankel matrices of extremal type:
The case 5× 5

In this section, we focus on the extremal case for H5 = H(a, b, c, d, e;
x, y, z, w). Our approach requires that we split the analysis into two
cases (e = 0 and e > 0), because we get a similar result using the re-
peated calculations in the proofs of Theorems 5.2, 5.3, 5.4, and 5.5 given
below for the case e < 0. Consider the solubility of Problem 1.1 for a
Hankel matrix H5, which is well-posed. By Lemma 2.4 and Lemma 2.8,
we first observe that Problem 1.1 is soluble for H5 if and only if there
exist x and y such that we simultaneously have
(5.1)
∥H25 (x)∥ ≤ 1, ∥H34 (x)∥ ≤ 1, ∥H35 (x, y)∥ ≤ 1, and ∥H44 (x, y)∥ ≤ 1,

where

H25 (x) :=

(
a b c d e
b c d e x

)
, H34 (x) :=

 a b c d
b c d e
c d e x

,

H35 (x, y) :=

 a b c d e
b c d e x
c d e x y

, and H44 (x, y) :=


a b c d
b c d e
c d e x
d e x y

.

To obtain our results, we let
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P25(x) := P (H25(x)), P34(x) := P (H34(x)), P35(x) := P (H35(x)), and

P44(x) := P (H44(x)).

We have relied heavily on the Nested Determinant Test so far for
checking positivity of matrices; however, we need to use different ap-
proaches in this section: For matrices A,B ∈ Mn(C), we let A◦B denote
their Schur product, where (A ◦B)i,j := (A)i,j (B)i,j for 1 ≤ i, j ≤ n.
The following result is well known: If A ≥ 0 and B ≥ 0, then A ◦B ≥ 0
[21]. Recall that two matrices A,B ∈ Mn(R) are called congruent if
there exists an invertible matrix Q ∈ Mn(R) such that B = QTAQ.
The following result is also well known: A ≥ 0 ⇐⇒ QTAQ ≥ 0 [15];
the facts will be used to prove Theorem 5.5.

We are ready to consider the first case:
The case e = 0. Using the Nested Determinants Test in Lemma 2.1

and eliminating the common factors in matices P25 (x), P34 (x), P35 (x, y)
and P44 (x, y), respectively, we can show

(5.2) ∥H25 (x)∥ ≤ 1 ⇐⇒ {|x| ≤ |a| and ab+ bc+ cd = 0,

(5.3) ∥H34 (x)∥ ≤ 1 ⇐⇒


ab+ bc+ cd = ac+ bd+ dx = 0 and

A (x) :=

(
a2 ab
ab a2 + b2 − x2

)
≥ 0,

(5.4)

∥H35 (x, y)∥ ≤ 1 ⇐⇒


ab+ bc+ cd = ac+ bd+ dx = 0 and

B (x, y) :=

(
a2 − x2 ab− xy
ab− xy a2 + b2 − x2 − y2

)
≥ 0,

and
(5.5)
∥H44 (x, y)∥ ≤ 1

⇐⇒


ac+ bd+ dx = ad+ cx+ dy = 0 and

C (x, y) :=

 a2 −c (b+ d) ac
−c (b+ d) a2 + b2 − x2 −cd− xy

ac −cd− xy 1− d2 − x2 − y2

 ≥ 0.

Then, we have:

Theorem 5.1. ([19]) Assume e = 0. Then, Problem 1.1 is soluble
for H5 if and only if one of the following hold:
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(i) d = 0 and ac = b (a+ c) = 0;
(ii) d ̸= 0, ab+ bc+ cd = 0, and |ac+ bd| ≤ |ad|.

The case e > 0. Direct calculations (i.e., the Nested Determi-
nants Test in Lemma 2.1 and eliminating the common factors in matices
P25 (x), P34 (x), P35 (x, y) and P44 (x, y)) imply

(5.6) ∥H25 (x)∥ ≤ 1 ⇐⇒ x = −ab+bc+cd+de
e and |x| ≤ |a|,

(5.7)

∥H34 (x)∥ ≤ 1

⇐⇒

(
a2e2−(ab+bc+cd+de)2

e2
m (x)

m (x)
(a2+b2−x2)e2−(ac+bd+ce+dx)2

e2

)
≥ 0,

(5.8)
∥H35 (x, y)∥ ≤ 1

⇐⇒


x = −ab+bc+cd+de

e , y = abd+bcd+cd2+d2e−ace−bde−ce2

e2
, and(

a2 − x2 ab− xy
ab− xy a2 + b2 − x2 − y2

)
≥ 0,

and
(5.9)

∥H44 (x, y)∥ ≤ 1 ⇐⇒ M :=

 f (x) g (x, y) h (x, y)
g (x, y) j (x, y) k (x, y)
h (x, y) k (x, y) ℓ (x, y)

 ≥ 0,

where

m (x) := e2(bc+cd+de+ex)−(ab+bc+cd+de)(ac+bd+ce+dx)
e2

,

f (x) := a2 − x2, g (x, y) := ab− xy, j (x, y) := a2 + b2 − x2 − y2

h (x, y) := ace+adx+bex+dxy
e , k (x, y) := abe+bce+ady+bey+cxy−exy+dy2

e , and

ℓ (x, y) :=
a2e2−a2d2+c2e2−abde−2c(ad+be)x−(c2+e2)x2−2d(ad+be+cx)y−(d2+e2)y2

e2
.

Then, we have:

Theorem 5.2. ([19]) Assume e > 0 and a = 0. Then, Problem 1.1
is soluble for H5 if and only if the following two conditions hold:

(i) bc+ cd+ de = 0 and
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(ii) |bd+ ce| ≤ |be|.

We let s := ab+ bc+ cd+ de+ ea. Then, we have:

Theorem 5.3. ([19]) Assume e > 0, a ̸= 0, and s = 0. Then,
Problem 1.1 is soluble for H5 if and only if the following three conditions
hold:

(i) a+ d ̸= 0;
(ii) b = c;
(iii) ab+ bd+ da = 0.

Theorem 5.4. ([19]) Assume e > 0, a ̸= 0, and s = 2ea. Then,
Problem 1.1 is soluble for H5 if and only if one of the following three
conditions hold:

(i) a− d ̸= 0;
(ii) b = 0;
(iii) ad = c (a+ e).

For the next result, let t := ac+ ad+ bd+ be+ ce and v := ac− ad+
2ae+ bd− be+ ce− s. We also let w1 (s) := s2 − (ad+2ae+ be)s+ aet
and w2 (s) := s2 + (ad− 2ae+ be)s− aet. Then, we have:

Theorem 5.5. ([19]) Assume e > 0, a ̸= 0, s ̸= 0, and s ̸= 2ea.
Then, Problem 1.1 is soluble for H5 if and only if the following three
conditions hold:

(i) s (2ae− s) > 0
(ii) w1 (s)w2 (s) ≥ 0;
(iii) v(s+ t) ≥ 0.

6. Partially contractive Hankel matrices of non-extremal type:
The case 5× 5

We now focus our attention on the non-extremal case for 5× 5 Han-
kel matrices, i.e., a2 + b2 + c2 + d2 + e2 < 1. Let α5 := −(1 − a2 −
b2 − c2 − d2), α6 := −detP23x2

1−a2−b2−c2−d2
, β5 := −2e(ab + bc + cd + de),

β6 :=
2d(ac+bd+ce)(1−b2−c2−d2−e2)

1−a2−b2−c2−d2
+ 2abe, γ5 := −e2(1 − b2 − c2 − d2 −

e2) + detP24 and γ6 :=
(ac+bd+ce)2(1−b2−c2−d2−e2)

1−a2−b2−c2−d2
+ b2 detP23. We

also let α7 := −e (ab+ bc+ cd+ de), β7 := −2d (ac+ bd+ ce) and

γ7 :=
(
1− a2 − b2 − c2 − d2

) (
1− c2 − d2 − e2

)
−(ac+ bd+ ce)2. Then

we have
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Theorem 6.1. Let ρ := ab + bc + cd + de = 0. Then Problem 1.1
is soluble for H5 if and only if S+ (5) ∩ S+ (6) ̸= ∅.

Proof. Since ab + bc + cd + de = 0, by Lemma [25] and a direct
calculation, we have
(6.1)
∥H25 (x)∥ ≤ 1

⇐⇒
(

1− a2 − b2 − c2 − d2 − e2 −ab− bc− cd− de− ex
−ab− bc− cd− de− ex 1− b2 − c2 − d2 − e2 − x2

)
≥ 0

⇐⇒ α5x
2 + β5x+ γ5 ≥ 0

⇐⇒ x5 ≤ x ≤ x6,

and
(6.2)
∥H34 (x)∥ ≤ 1

⇐⇒

 1− a2 − b2 − c2 − d2 −ab− bc− cd− de −ac− bd− ce− dx
−ab− bc− cd− de 1− b2 − c2 − d2 − e2 −bc− cd− de− xe
−ac− bd− ce− dx −bc− cd− de− xe 1− c2 − d2 − e2 − x2

 ≥ 0

⇐⇒

(
1− b2 − c2 − d2 − e2 −bc− cd− de− xe

−bc− cd− de− xe 1− c2 − d2 − e2 − x2 − (ac+bd+ce+dx)2

1−a2−b2−c2−d2

)
≥ 0

⇐⇒ α6x
2 + β6x+ γ6 ≥ 0

⇐⇒ −β6−
√

β2
6−4α6γ6

α6
≤ x ≤ −β6+

√
β2
6−4α6γ6

α6
.

where, x5 :=
−e(ab+bc+cd+de)−

√
(1−a2−b2−c2−d2−e2) detP24

1−a2−b2−c2−d2
and

x6 :=
−e(ab+bc+cd+de)+

√
(1−a2−b2−c2−d2−e2) detP24

1−a2−b2−c2−d2
. Observe that β2

6 −
4α6γ6 ≥ 0. Thus, by the above analysis, we have that Problem 1.1 is
soluble for H4 if and only if S+ (5) ∩ S+ (6) ̸= ∅.

Let σ := 1− a2 − b2 − c2 − d2 and τ := ac+ bd+ ce. Then detP24 =
ρ2 − σ

(
σ + a2 − e2

)
, so we have

Theorem 6.2. Let ρ ̸= 0 and detP24 = 0. Then Problem 1.1 is
soluble for H5 if and only if the following three conditions hold:

(i) deρ2 − ρστ + e2ρσ + abσ2 − ρσ2 = 0 and
(ii) x = −eρ

σ ∈ S+ (7) .
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Proof. We recall that

(6.3) ∥H25 (x)∥ ≤ 1 ⇐⇒ x =
−eρ

σ

and
(6.4)
∥H34 (x)∥ ≤ 1

⇐⇒

(
0 ab− ρ− xe− ρ(τ+dx)

σ

ab− ρ− xe− ρ(τ+dx)
σ 1− c2 − d2 − e2 − x2 − (τ+dx)2

σ

)
≥ 0

Let α7 := −
(
σ − d2

)
, β7 := −2dτ and γ7 :=

(
1− c2 − d2 − e2

)
σ + τ2.

Then we note that β2
7 ≥ 4α7γ7. Thus, by (6.4), we have

∥H34 (x)∥ ≤ 1 ⇐⇒ α7x
2 + β7x+ γ7 ≥ 0

⇐⇒ −β7−
√

β2
7−4α7γ7

α7
≤ x ≤ −β7+

√
β2
7−4α7γ7

α7
.

Therefore, by (6.3) and (6.4), we have

deρ2 − ρστ + e2ρσ + abσ2 − ρσ2 = 0

and x = −eρ
σ ∈ S+ (7), as desired.

Theorem 6.3. ρ ̸= 0 and detP24 ̸= 0. Then Problem 1.1 is soluble
for H5 if and only if the following two conditions hold:

(i) β2
8 − 4α8γ8 ≥ 0 and

(ii) S+ (5) ∩ S+ (8) ̸= ∅.

Proof. Note that

(6.5) ∥H25 (x)∥ ≤ 1 ⇐⇒ S+ (5) ̸= ∅

and
(6.6)
∥H34 (x)∥ ≤ 1

⇐⇒

(
σ + a2 − e2 − ρ2

σ ab− ρ− xe− ρ(τ+dx)
σ

ab− ρ− xe− ρ(τ+dx)
σ 1− c2 − d2 − e2 − x2 − (τ+dx)2

σ

)
≥ 0

Let α8 :=
(a2+d2+σ)σ−a2d2−(de−ρ)2

σ ,

β8 :=
2(abdρ−dρ2+abeσ−eρσ−a2dτ+de2τ−eρτ−dστ)

σ , and

γ8 :=
[
σ
(
σ + a2 − e2

)] [
σ
(
1− c2 − d2 − e2

)
− τ2

]
− [σ (ab− ρ)− ρτ ].

Thus, by (6.6), we have

∥H34 (x)∥ ≤ 1 ⇐⇒ α8x
2 + β8x+ γ8 ≥ 0

⇐⇒ −β8−
√

β2
8−4α8γ8

α8
≤ x ≤ −β8+

√
β2
8−4α8γ8

α8
, if β2

8 − 4α8γ8 ≥ 0
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Therefore, by (6.3) and (6.4), we have that Problem 1.1 is soluble for
H5 if and only if S+ (5) ∩ S+ (8) ̸= ∅, if β2

8 − 4α8γ8 ≥ 0.
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Birkhäuser-Verlag, Boston, 1982.

[17] C. R. Johnson and L. Rodman, Completion of partial matrices to contractions,
J. Funct. Anal. 69 (1986), 260-267.

[18] C. R. Johnson and L. Rodman, Completion of Toeplitz partial contractions,
SIAM J. Matrix Anal. Appl. 9 (1988), 159-167.

[19] I. H. Kim, S. Yoo, and J. Yoon, Completion of Hankel partial contractions of
non-extremal type, J. Korean Math. Soc. 52 (2015), 1003-1021.



150 Sang Hoon Lee

[20] M. Laurent, A connection between positive semi-definite and Euclidean dis-
tance matrix completion problems, Numer. Linear Algebra Appl. 273 (1998),
9-22.

[21] V. Paulsen, Completely bounded maps and dilations, Pitmam Research Notes
in Mathematics Series, vol. 146, Longman Sci. Tech., New York, 1986.

[22] S. Parrott, On a quotient norm and Sz.-Nagy-Foiaş lifting theorem, J. Funct.
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